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Non-Linear Control Allocation Using Piecewise Linear 
Functions: A Linear Programming Approach 

Michael A. Bolender * 
David B. Doman ^ 

Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 * 

Abstract 

The performance of two different approaches to solving the non-hnear control allo- 

cation problem is presented. The non-linear control allocation problem is formulated 

using piecewise hnear functions to approximate the control moments produced by a set 

of control effectors. When the control allocation problem is formulated as a piecewise 

hnear program, an additional set of constraints enter into the problem formulation. 

One approach is to introduce a set of binary variables to enforce these constraints. 

The result is a mixed-integer hnear programming problem that can be solved using 

any branch-and-bound software.  A second approach is to solve the piecewise hnear 

programming problem using a modified simplex method.   The simplex algorithm is 

modified to enforce a subset of the decision variables to enter into the basis only if 

certain conditions are met. We will show that solving the optimization problem using 

the simplex based approach is significantly faster than solving the same problem using 

a mbced-integer formulation. We will then compare the closed-loop performance of a 

re-entry vehicle using both approaches. 

*Visiting Scientist. Senior Member AIAA. 
^Senior Aerospace Engineer. Senior Member AIAA. 
^U.S. Government work not protected by U.S. copyright 
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Introduction 

Historically, the control allocation problem has been approached by assuming that aerody- 

namic control effectors produce control moments that are Hnear functions (at least locally) 

of the control surface deflection. While this approach may be valid for nearly all aircraft 

under nominal flight conditions when there are no failed control surfaces, the occurrence of 

one or more failed control effectors may result in a situation where the linear assumption is 

no longer valid. When a control effector fails, the resulting rolling, pitching, and yawing mo- 

ments produced by the failed effector must be accommodated by reconfiguring the remaining 

healthy control effectors. For some failures, one or more of the remaining effectors may be 

driven to a position limit in order to compensate for the failed effector. The behavior of the 

control moment curve in regions near position hmits tends be highly non-Hnear. Therefore, 

the hnear model may introduce significant modeUing errors that result in incorrect control 

surface deflections and this may ultimately lead to loss of the vehicle. 

There have been recent efforts to improve upon the current control allocation approaches 

that assume a hnear relationship between the control moments and the control effector. Do- 

man and Oppenheimer^ have implemented a Hnear control allocator that added an intercept 

term to an estimate of the local slope of the control moment curve in order to more ac- 

curately account for the non-linear behavior of aerodynamic control effectors. They have 

shown an improvement in tracking performance when there are failures present without any 

increase in computation time. However, the intercept correction method assumes that the 

control moment curves are monotonic functions of position, otherwise it is possible that 

the control allocator may settle in a region where the slope changes sign, resulting in gross 

modelling errors due to an incorrect intercept term. 

Doman and Sparks^ provided a method for the determination of the non-linear attainable 



moment set (AMS) for the two moment case. Their effort considered control effectors that 

produced a control moment that was a quadratic function of effector position about one axis 

and a linear function about a second axis. More recently, Bolender and Doman^ extended the 

work in Reference^ to three dimensions for the computation of the non-hnear AMS volume 

when the control moments about the third control axis were linear functions of effector 

position. At the present time, this particular methods does not lend itself to be applied in 

a real-time control system due to the excessive computational burden required. 

Most recently, Bolender and Doman"* have shown that a piecewise linear representation 

of the control moment curve accounts for the non-linearities inherent in aerodynamic data. 

The only requirement is that the control moments generated by each effector be separable, 

meaning that no aerodynamic interference occurs among the effectors. The resulting control 

allocation problem was posed as a mixed-integer hnear program and solved using a pubHc 

doman branch-and-bound optimization code. The downside of this approach was the long 

time needed by the solver to find a solution, making implementation in a digital flight control 

system impracticable. 

The intent of this paper is to show that the piecewise linear control allocation approach 

can be solved fast enough to be implemented in a digital flight-control system. The approach 

taken differs from the authors' initial paper on this subject in two ways. The first difference is 

to move away from the mixed-integer hnear programming form of the optimization problem 

and back to a linear programming problem that imposes a set of restricted basis entry 

rules. The second difference is to solve a "mixed optimization" problem as opposed to the 

solution of the multi-branch control allocation problem. This allows us to achieve the same 

objectives while only having to solve one optimization problem instead of two. We compare 

the performance of the simplex method with restricted basis entry rules to the mixed-integer 

formulation and show that the two approaches give the same performance. 



Piecewise Linear Mixed Optimization Control 
Allocation 

The control allocation problem solved in Reference'* was a Buffington's^ multi-branch ap- 

proach. However, instead of a linear relationship between the control effector displacements 

and the control moments, a non-linear relationship was used.  Let the non-hnear vector- 

valued function G{5) denote the relationship between the control effectors and their mo- 

ments, the function G{6) maps M" into R"" where n>m. Let ddes denote the controlled 

variables. In this case the controlled variables are the roUing, pitching and yawing moments. 

Buffington's multi-branch approach requkes that two optimization problems be solved. The 

first optimization problem is called the control deficiency branch. The objective of the con- 

trol deficiency branch is to minimize \\wl(G{S) - ddes)\\i subject to position constraints on 

S. The value of the performance index for this optimization problem indicates whether or 

not ddes is feasible. If feasibihty of the control allocation problem has been ascertained, a 

second optimization problem is then solved that minimizes some secondary objective. The 

objective function of this second optimization is typically taken to be \\wl{S - 6p)\\i subject 

to G{S) = ddes and position constraints on 6. This is commonly referred to as the control 

sufficiency branch. 

The mixed optimization problem that was formulated by Bodson^ combines the two 

branches of the multi-branch control allocation problem into a single optimization problem. 

A new parameter e is introduced for the purpose of prioritizing either control deficiency or 

control sufficiency. The mixed optimization problem is stated as: 

min J =\\wl{G{S) - ddes)\\i + e\\wl{d - S,)\U (1) 

subject to: 

^min _ " _: ^max \2ij 



where iWo is an m x 1 vector of weights to prioritize a given control axis, G{6) is a non-hnear, 

vector-valued function that maps R" —>■ R^, ^ is an n x 1 vector of control effectors, io„ is 

an n X 1 vector of weights on the control effectors, and 5p is an n x 1 vector of "preferred" 

control effector displacements. Again it is assumed that n>m. For the time being we will 

make the assumption that G{S) = Bd. The mixed optimization problem can then be posed 

as a linear programming problem. The corresponding linear program can then be solved by 

any readily-available Hnear programming software. 

Bodson^ gives one possible transformation to a linear programming problem for the 

optimization problem defined in Equations 1 and 2; however, we selected a transformation 

approach that follows that found in Bertsimas.'^ The transformation reUes on the observation 

that \x\ is the smallest number Xs that satisfies both x < Xs and —x<Xs. As a result, we 

are able to pose the mixed optimization problem as follows: 

min J = w'^ds + ew^Us (3) 

subject to: 

<5, > 0 (4) 

Us>0 (5) 

BS + 6s> ddes (6) 

-BS + 6s > -ddes (7) 

6 + Us>Sp (8) 

-S + Us>-6p (9) 

Smin <S< dmax (10) 

The vectors 6s and Ug are vectors of "slack variables". The reason for selecting this particular 

transformation as opposed to the one in Bodson^ is that this formulation allows us to easily 

implement the piecewise linear function approximation. 



To convert the linear programming problem into a piecewise linear programming problem, 

we simply replace BS above with a piecewise Unear representation to each control moment 

curve, (i.e., Li{Si), Mt(5,), and Ni{5i)). We choose a set of breakpoints such that for each 

Si, i = l,...,n: 

k=l 

k=l 

x^hf^ = o,   ifk>j + i,j = i, .,Ki-l 

(11) 

(12) 

(13) 

where A^ is a non-negative interpolating coefficient corresponding to the i*'' control effector 

at breakpoint k, and Ki denotes the number of breakpoints for the i"' control effector. 

Equation 13 is necessary in order ensure that 5i is approximated by no more than two 

adjacent values of AJ . If 5i falls at a breakpoint, there will only be one value of AJ ' that 

is non-zero and Equation 13 is still valid. 

The piecewise linear approximations for the control moments as a function of 5,- ' are 

written as 

Ki 

k=l 

M.«.f;Af>Mf 
ik=l 

iV,«.f;Af)7Vf 

(14) 

(15) 

(16) 
fc=i 

where L^', M^', and N^''^ are the values of the roUing, pitching, and yawing moment curves 

evaluated at the fc*'' breakpoint for the i*'^ control effector. We are now able to re-write the 

B matrix as 

B = 
L] (k) 

(fc) 

'2,(1)     ^(2) 

Mf)   Mf)   '...Ml 
Ni'^    N?^   ...   iVf   ...   N, 

6 

r{Km)' 

{Km) 
m 

(17) 



Furthermore, we define a vector A as 

A« 
(2) Ai' 

A(^> 
(18) 

such that B5 in Equations 6 and 7 is replaced by BA. The vector A is of length ^"=,1 i^i 

and B is a matrix of size n,^ x YH=I ^i where rzc^ is the number of controlled variables. 

In the piecewise linear optimization problem, the constraints dmin < ^ < ^max are replaced 

by A,- ' > 0. The upper and lower bounds on S are accounted for in the selection of the 

breakpoints for each Si. Once we obtain an optimal solution to the problem, we compute 

each Si using Equation 11. It is also necessary to include in the problem the n constraints 

that correspond to Equation 12. 

The resulting optimization problem is 

min J = vj^Ss + ew^u (19) 



subject to: 

Ss>0 (20) 

Us>0 (21) 

BA + Ss> ddes (22) 

-BA + 5,>-ddes (23) 

f;Af)<5f+ «,,,> 5,,, ■                                                          (24) 

f;Af^5f)+«3,>-<5,, (25) 

Af ^ > 0 (26) 

EAf^l (27) 

Ap)Af)=0,    iik>j + l,j = l,...,Ki-l (28) 

The constraint given by Equation 28 forces us to choose one of two approaches in order 

to obtain a solution to the above optimization problem. The first approach is to define a 

set of binary variables along with a set of additional constraints that enforce Equation 28. 

The resulting optimization problem is then a mixed-integer linear program. The second 

approach is to solve the optimization problem as a finear progranuning problem using a 

modified simplex algorithm. In order to accommodate Equation 28, "restricted basis entry 

rules" are used to determine which A,-    are allowed to enter the basis. 

Mixed Integer Linear Program Formulation 

Begin by considering the piecewise linear approximation shown in Figure 1.  Note that if 

there are K breakpoints, then there are K — 1 linear segments. We assign a variable y^ ' 



that corresponds to the A;*'' linear segment of the piecewise linear approximation such that 

ik)^(l   if AW 7^ 0 and A(*+i) 7^ 0, 
lO   otherwise 

for k = l,...,K-1. Next, we make the observation that if A^^^ j^O and A^^) ^ 0, then 

A(i) < 2/(1) (30) 

A(2)<y(i) (31) 

where y^^) = 1. However, if we are on the segment where A^^^ 7^ 0 and A^^) ^ 0, such that. 

2/(2) = 1, then 

A(2) < y(2) (32) 

A(3)<y(2). (33) 

If we proceed in this manner, we observe that the following restrictions can be placed on 

the A('=) 

A(')<t/(i), (34) 

AW < ^^=-1) + yW^ k = 2,...,K-l (35) 

A(^) < ^(^-1). (36) 

The rationale behind Equation 35 is as follows: the A^*^) that correspond to points that are 

interior to the interval (i.e., they are not the endpoints of the interval on which x is defined) 

can be associated with one of two Hne segments. A particular A^*^) is the endpoint for the Hne 

segment immediately preceding it in addition to the line segment that comes immediately 

after it. Only one of these two hne segments may be "active" at any time; therefore, the 

right-hand side of Equation 35 is never greater than one. In addition to Equations 34^36, we 

have an additional constraint to ensure that only one of the K — 1 line segments is active, 

hence only one of the y(*^) can be equal to one: 

K-l 

E y^'^ = 1 (37) 

9 
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Figure 1: Piecewise Linear Function Approximation 

The above can be generalized for the multi-variable case as follows. 

xf^<yP,    i = l,...,m 

X?^<yt'^ + yf'\    i = l,...,m,    k = 2,...,Ki-l 

Ki-1 

m 

(Ki-l) 

k=l 

yf^ e {0,1} 

= 1,    i = l,.. .,m 

(38) 

(39) 

(40) 

(41) 

(42) 

Equations 38-42 replace Equation 28 above.   As a result, we have a mixed-integer Unear 

programming problem. 

Linear Program with Restricted Basis Entry Rules 

1 

An alternate method of handling Equation 28 is to solve the piecewise hnear program given 

in Equations 19-28 minus Equation 28.   Without Equation 28, we are left with a linear 

10 



programming problem that can be easily solved using the simplex method. However, we need 

an alternate approach of enforcing the adjacency constraint. Instead of defining Equation 28 

explicitly and including it in the problem formulation, it is to be enforced through a set of 

rules in the simplex algorithm that only admit a A[^^ if Equation 28 is satisfied. The rules 

are commonly referred to as "restricted basis entry rules". More detail's on the simplex 

algorithm with restricted basis entry rules can be found in Miller* and Hadley.^ 

A survey of commercial Hnear programming solvers indicated that simplex based solvers 

with restricted basis entry rules were unavailable. The GNU Linear Programming Kit 

(GLPK), which is an open-source general hnear program and mixed-integer linear program 

solver written in C, was modified to acconunodate restricted basis entry rules. 

Results 

The results presented in this section are given for an unpowered re-entry vehicle. This 

particular vehicle utilizes the following six control effectors: left and right ruddervators, left 

and right flaperons, a speed brake, and a body flap. We show that the mixed-optimization 

problem implemented with piecewise linear approximations of the control moments and 

solved using a simplex method with restricted basis entry rules gives a solution that is 

comparable to that given in Bolender and Doman."* We also demonstrate that the mixed- 

optimization problem can be solved fast enough that it is a candidate for future use on a 

digital flight control computer equipped with a processor that is comparable to one found on 

current desktop computers. For this study, the GLPK solver was implemented as a C mex 

file and compiled to minimize execution speed. The computer on which this analysis was run 

was equipped with an Athlon 1800XP+ processor, 1.5 GB of RAM, and the Windows 2000 

operating system. We compare the execution time of the simplex method with restricted 

11 



basis entry rules to the time required to solve the same optimization problem using the 

mixed-integer linear programming formulation of the mixed-optimization problem. The 

mixed-integer linear programs are solved using the branch-and-bound solver supplied by the 

GLPK package. 

Simulation Results 

The results that follow give the closed-loop vehicle performance when there are two failures 

injected into the flight control system at different times during the approach and landing 

phases. It is assumed that there is some type of fault detection capabihty on-board the 

aircraft to identify the failures. The failure information is immediately passed to the control 

allocation algorithm in order to facilitate re-configuration of the vehicle's effectors. The 

aircraft's trajectory begins at an altitude of about 15,000 ft above the runway and 4 miles 

downrange from the runway threshold. The first failure occurs 30 s into the simulation, and 

involves the body flap being locked at —5 deg. This failure contributes a constant pitching 

moment to the aircraft. A second failure, where the right rudder becomes locked at 1 deg, 

occurs at 40 s. This particular failure adds not only a pitching moment to the aircraft, but 

also rolling and yawing moments. This particular failure combination was chosen because 

it requires the flaperons to operate in a highly non-hnear region of the control moment 

curve. After the failures are introduced, the aircraft tries to follow the nominal approach 

trajectory to the runway threshold. The aircraft extends the landing gear at about 68 s 

and flares immediately before touchdown. The simulation ends at touchdown when the 

weight-on-wheels switch is triggered. 

Presented below in Figures 2 and 3 are the time histories for the control moment error 

and the control eflFector command time histories. In Figure 2 the moment error is defined by 

12 



logjo ||JBA — ddeslU where B and A are defined above. Recall that B is the piecewise linear 

analog to the B matrix that one encounters when using a linear approximation; therefore, 

the product ^A is the linear interpolation of the control moment data. We see that the 

modelling errors are negligible until the rudder failure is introduced at the 40s mark. Between 

40s and 60s there is a control deficiency; therefore, the desired moment, djes is not feasible 

under the failure conditions. The performance of the mixed-optimization is identical to that 

given in Reference [4]. 

The control surface time histories given in Figure 3 are the control deflections returned 

by the control allocator. The control surface deflections compare favorably. There are very 

minor differences in the right flap deflection after the rudder failure is introduced, but this 

discrepancy does not appear to be an issue. 

Performance Results 

The result given in Table 1 is for a fixed flight condition, and considers 10000 different control 

input vectors with each component selected randomly from a uniform distribution. For each 

input vector, the control allocation problem was solved using both a mixed-integer linear 

program and simplex with restricted basis entry rules. The preference vector was taken to 

he Sp = 0. The execution time of both approaches was measured using the standard C 

library function clockO. It is apparent that the simplex method, on average, is an order 

of magnitude faster than the MILP approach. If it is assumed that the typical sample time 

of a digital flight control system is 0.02 sec, then the solution time given in Table 1 for the 

simplex method with restricted basis entry is more than adequate for practical application 

given a processor that is in the same class as that tested above. The mean control deflection 

for each method is given in Table 2. Note that for this particular set of random ddes, the 

13 
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Mean Std. Dev. 

MILP 0.0885 0.0423 
RBE 0.0083 0.0042 

Table 1: Solver Execution Time Statistics: Athlon XP1800+/Windows 2000 

Mean Std. Dev. 

MILP 18.2365 8.6293 
RBE 18.2657 8.5736 

Table 2: Mean and Standard Deviation of II5II2. 

mean deflections are nearly the same for both approaches. On the other hand, Table 3 shows 

a significant difference in the average moment error. There were a small number of ddes for 

which the Simplex Method with Restricted Basis Entry Rules failed to find a set of control 

deflections that would produce a feasible moment while the MILP formulation succeeded. 

The average error for these vectors is 0.4938 and is the cause for the poor correlation between 

the MILP solution and the Simplex with Restricted Basis Entry Rules. For each of these 

vectors, the control deficiency occurs in the yawing moment. Although it occurs in less than 

0.5% of the cases that were tested, the cause of this behavior is currently tmder investigation. 

Conclusions 

The approach to non-Unear control allocation that was presented assumed that control 

moments generated by the defiection of aerodynamic surfaces were separable functions. 

This assumption allows us to approximate any separable non-Hnear function by a piecewise 

Mean Std. Dev. 

MILP 4.4547 X 10-" 1.0709 X 10-^*^ 
RBE 1.4139 X 10-^ 2.6927 X 10"^ 

Table 3: Mean and Standard Deviation of \\BA — ddeslU- 
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linear function in the control allocation problem. As a result, we were able to cast a non- 

linear optimization problem as a linear programming problem where a subset of the decision 

variables are subject to a set of restricted basis entry rules. Although this still gives an 

approximate solution to the control allocation problem, it is much more accurate than the 

traditional methods that assume hnear relationships between the control moments and the 

control effector positions . It was subsequently shown that a simplex algorithm that enforces 

the restricted basis entry rules is probably fast enough, given the appropriate processor clock 

speed, for use in a real time flight control system. 
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